On Simultaneous Planar Graph Embeddings
نویسندگان
چکیده
We consider the problem of simultaneous embedding of planar graphs. There are two variants of this problem, one in which the mapping between the vertices of the two graphs is given and another in which the mapping is not given. We present positive and negative results for the two versions of the problem. Among the positive results with given mapping, we show that we can embed two paths on an n× n grid, and two caterpillar graphs on a 3n× 3n grid. Among the negative results with given mapping, we show that it is not always possible to simultaneously embed three paths or two general planar graphs. If the mapping is not given, we show that any number of outerplanar graphs can be embedded simultaneously on an O(n)×O(n) grid, and an outerplanar and general planar graph can be embedded simultaneously on an O(n2)×O(n2) grid. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Simultaneous Graph Embedding with Bends and Circular Arcs
We consider the problem of simultaneous embedding of planar graphs. We demonstrate how to simultaneously embed a path and an n-level planar graph and how to use radial embeddings for curvilinear simultaneous embeddings of a path and an outerplanar graph. We also show how to use star-shaped levels to find 2-bends per path edge simultaneous embeddings of a path and an outerplanar graph. All embed...
متن کاملA note on simultaneous embedding of planar graphs
Let G1 and G2 be a pair of planar graphs such that V (G1) = V (G2) = V . A simultaneous embedding [6] Ψ = (Γ1,Γ2) of G1 and G2 is a pair of crossing-free drawings Γ1 and Γ2 of G1 and G2, respectively, such that for every vertex v ∈ V we have Γ1(v) = Γ2(v). If every edge e ∈ E(G1) ∩ E(G2) is represented with the same simple open Jordan curve both in Γ1 and in Γ2 we say that Ψ is a simultaneous e...
متن کاملGeometric Simultaneous Embeddings of a Graph and a Matching
The geometric simultaneous embedding problem asks whether two planar graphs on the same set of vertices in the plane can be drawn using straight lines, such that each graph is plane. Geometric simultaneous embedding is a current topic in graph drawing and positive and negative results are known for various classes of graphs. So far only connected graphs have been considered. In this paper we pr...
متن کاملMonotone Simultaneous Embeddings of Upward Planar Digraphs
We study monotone simultaneous embeddings of upward planar digraphs, which are simultaneous embeddings where the drawing of each digraph is upward planar, and the directions of the upwardness of different graphs can differ. We first consider the special case where each digraph is a directed path. In contrast to the known result that any two directed paths admit a monotone simultaneous embedding...
متن کاملDisconnectivity and Relative Positions in Simultaneous Embeddings
For two planar graphs G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) sharing a common subgraphG = G 1∩G 2 the problem Simultaneous Embedding with Fixed Edges (SEFE) asks whether they admit planar drawings such that the common graph is drawn the same. Previous algorithms only work for cases where G is connected, and hence do not need to handle relative positions of connected components. We consider t...
متن کاملA pair of trees without a simultaneous geometric embedding in the plane
Any planar graph has a crossing-free straight-line drawing in the plane. A simultaneous geometric embedding of two n-vertex graphs is a straight-line drawing of both graphs on a common set of n points, such that the edges withing each individual graph do not cross. We consider simultaneous embeddings of two labeled trees, with predescribed vertex correspondences, and present an instance of such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 36 شماره
صفحات -
تاریخ انتشار 2003